Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hossein Aghabozorg,* Bahar Nakhjavan, Mohammad Ghadermazi and Farshid Ramezanipour

Department of Chemistry, Teacher Training University, 49 Mofateh Avenue, 15614 Tehran, Iran

Correspondence e-mail:
aghabozorg@saba.tmu.ac.ir

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$
H -atom completeness 99%
Disorder in solvent or counterion
R factor $=0.053$
$w R$ factor $=0.130$
Data-to-parameter ratio $=16.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bis(propane-1,3-diaminium) tris(pyridine-2,6-dicarboxylato- $\left.\kappa^{3} O, N, O^{\prime}\right)$ cerate(III) nitrate 3.5-hydrate

The title compound, $\left(\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{Ce}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)_{3}\right]\left(\mathrm{NO}_{3}\right)$-$3.5 \mathrm{H}_{2} \mathrm{O}$, is a nine-coordinate Ce complex obtained from a proton-transfer compound. The molecular structure contains three pyridine-2,6-dicarboxylate species as tridentate ligands and two propane-1,3-diaminium cations as counter-ions. The asymmetric unit also contains one nitrate anion and 3.5 uncoordinated water molecules. In the crystal structure, a wide range of hydrogen-bonding interactions connect the various fragments into a supramolecular structure.

Comment

In recent years, several lanthanide complexes containing anionic forms of pyridine-2,6-dicarboxylic acid $\left(\mathrm{pydcH}_{2}\right)$ have been synthesized (Lü et al., 2005; Ghosh \& Bharadwaj, 2005, 2004; Brouca-Cabarrecq et al., 2002). We have been involved in the study of the coordination chemistry of a large number of elements, including lanthanides, using our proton-transfer compounds. The most recent proton-transfer compound we have synthesized is $\left(\mathrm{PDAH}_{2}\right)($ pydc $) \cdot \mathrm{pydcH} \mathrm{H}_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{PDAH}_{2}\right.$ is propane-1,3-diamine, pydc is pyridine-2,6-dicarboxylate and pydcH H_{2} is pyridine-2,6-dicarboxylic acid) (Aghabozorg et al., 2006), which was used for the preparation of the metalorganic complex of the title compound, (I).

Received 11 May 2006
Accepted 6 June 2006

(I)

The structure of (I) shows only the anionic fragment of the starting proton-transfer compound, which is linked to the Ce atom as a ligand; the cationic species is an uncoordinated fragment (Fig. 1). The $\mathrm{Ce}^{\mathrm{III}}$ atom is coordinated by three tridentate $(\mathrm{pydc})^{2-}$ ligands. Two $\left(\mathrm{PDAH}_{2}\right)^{2+}$ cations, one
nitrate anion and 3.5 water molecules are also observed in the crystal structure as uncoordinated fragments. It should be noted that the starting proton-transfer compound contains both neutral and dianionic forms of pydcH_{2}, while complex (I) includes only the dianionic form of this diacid.

The atoms of the nitrate ion are disordered over two positions. Atoms C26 and C 27 of one of the $\left(\mathrm{PDAH}_{2}\right)^{2+}$ fragments also occupy two positions, showing further disorder in the structure. The central $\mathrm{Ce}^{\mathrm{III}}$ atom is linked to the ligands by $\mathrm{Ce}-\mathrm{O}$ and $\mathrm{Ce}-\mathrm{N}$ bonds, for which the distances are almost in the same range as the Ce complexes (Moghimi et al., 2002; Sheshmani et al., 2005) of our other proton-transfer compound, (pydaH)(pydcH) (pyda is 2,6-pyridinediamine) (Aghabozorg et al., 2005). All $\mathrm{Ce}-\mathrm{O}$ bonds are nearly equal to each other, and the $\mathrm{Ce}-\mathrm{N}$ bonds are almost the same (Table 1).

A noticeable characteristic of the structure of (I) is a large number of hydrogen-bonding interactions throughout the crystal structure. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds connect the components of the crystal structure. The D. .A distances of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are in the range 2.68 (1)-3.22 (1) \AA, showing both strong and weak interactions. The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds have $\mathrm{D} \cdots \mathrm{A}$ distances in the range $2.72(1)-2.946$ (9) \AA. These interactions result in the formation of a supramolecular structure based on a hydrogen-bonded network.

Experimental

A solution of $\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in water $(20 \mathrm{ml})$ was added to an aqueous solution $(20 \mathrm{ml})$ of $\left(\mathrm{PDAH}_{2}\right)($ pydc $) \cdot \mathrm{pydcH}_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$ in a $1: 2$ molar ratio. Crystals of (I) were obtained after allowing the mixture to stand for one week at room temperature.

Crystal data

$\left(\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{Ce}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)_{3}\right]-$
$\left(\mathrm{NO}_{3}\right) \cdot 3.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=912.29$
Triclinic, $P \overline{1}$
$a=10.4071$ (10) \AA
$b=13.7063$ (14) \AA
$c=14.3438$ (14) \AA
$\alpha=65.385$ (5) $^{\circ}$
$\beta=80.327(5)^{\circ}$

Data collection

Bruker SMART 1000 CCD area-	16675 measured reflections
detector diffractometer	8575 independent reflections
φ and ω scans	6719 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.036$
$(S A D A B S ;$ Sheldrick, 1998)	$\theta_{\max }=28.0^{\circ}$
$T_{\min }=0.732, T_{\max }=0.769$	

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.130$
$S=1.06$
8575 reflections
518 parameters
H-atom parameters constrained
$\gamma=78.883(5)^{\circ}$
$V=1816.4(3) \AA^{3}$
$Z=2$
$D_{x}=1.669 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=1.34 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Prism, colourless
$0.40 \times 0.20 \times 0.20 \mathrm{~mm}$

16675 measured reflections
8575 independent reflections
6719 reflections with $I>2 \sigma(I)$
$\theta=28.0^{\circ}$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.04 P)^{2} \\
&+7.9 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=3.01 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.45 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Figure 1
The asymmetric unit of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. Both disorder components of the nitrate anion and one of the propane-1,3-diaminium cations are shown.

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

Ce1-O5	2.504 (5)	Ce1-O9	2.534 (5)
Ce1-O11	2.505 (5)	$\mathrm{Ce} 1-\mathrm{N} 2$	2.606 (6)
Ce1-O7	2.509 (5)	Ce1-N1	2.629 (6)
Ce1-O1	2.510 (5)	Ce1-N3	2.635 (6)
Ce1-O3	2.523 (5)		
O5-Ce1-O11	79.91 (17)	$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{N} 2$	131.76 (17)
O5-Ce1-O7	124.48 (16)	$\mathrm{O} 3-\mathrm{Ce} 1-\mathrm{N} 2$	74.87 (17)
O11-Ce1-O7	88.83 (16)	$\mathrm{O} 9-\mathrm{Ce} 1-\mathrm{N} 2$	137.24 (17)
O5-Ce1-O1	74.42 (16)	$\mathrm{O} 5-\mathrm{Ce} 1-\mathrm{N} 1$	74.54 (17)
O11-Ce1-O1	74.98 (16)	O11-Ce1-N1	134.06 (17)
O7-Ce1-O1	153.04 (16)	$\mathrm{O} 7-\mathrm{Ce} 1-\mathrm{N} 1$	137.07 (17)
$\mathrm{O} 5-\mathrm{Ce} 1-\mathrm{O} 3$	86.35 (17)	$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{N} 1$	61.77 (17)
$\mathrm{O} 11-\mathrm{Ce} 1-\mathrm{O} 3$	153.34 (17)	$\mathrm{O} 3-\mathrm{Ce} 1-\mathrm{N} 1$	61.57 (17)
O7-Ce1-O3	80.25 (17)	$\mathrm{O} 9-\mathrm{Ce} 1-\mathrm{N} 1$	74.30 (18)
$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{O} 3$	123.10 (17)	$\mathrm{N} 2-\mathrm{Ce} 1-\mathrm{N} 1$	119.10 (18)
O5-Ce1-O9	148.84 (18)	$\mathrm{O} 5-\mathrm{Ce} 1-\mathrm{N} 3$	136.61 (17)
O11-Ce1-O9	123.32 (17)	O11-Ce1-N3	62.10 (18)
O7-Ce1-O9	80.02 (17)	O7-Ce1-N3	77.34 (17)
O1-Ce1-O9	90.90 (17)	$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{N} 3$	76.05 (16)
O3-Ce1-O9	78.85 (17)	$\mathrm{O} 3-\mathrm{Ce} 1-\mathrm{N} 3$	136.78 (18)
$\mathrm{O} 5-\mathrm{Ce} 1-\mathrm{N} 2$	61.67 (16)	$\mathrm{O} 9-\mathrm{Ce} 1-\mathrm{N} 3$	61.23 (18)
$\mathrm{O} 11-\mathrm{Ce} 1-\mathrm{N} 2$	78.50 (17)	N2-Ce1-N3	123.91 (18)
O7-Ce1-N2	62.82 (16)	$\mathrm{N} 1-\mathrm{Ce} 1-\mathrm{N} 3$	116.98 (18)

Table 2
Hydrogen-bond geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N4-H4B $\cdots \mathrm{O} 16$	0.91	1.95	2.819 (8)	159
$\mathrm{N} 4-\mathrm{H} 4 \mathrm{C} \cdots \mathrm{O} 15^{\text {i }}$	0.91	2.02	2.924 (10)	173
$\mathrm{N} 4-\mathrm{H} 4 \mathrm{D} \cdots \mathrm{O} 1^{\text {ii }}$	0.91	2.01	2.892 (9)	163
N5-H5A \cdots O 4	0.91	1.90	2.800 (10)	168
N5-H5B $\cdots \mathrm{O}^{\text {ii }}$	0.91	1.98	2.863 (8)	164
$\mathrm{N} 5-\mathrm{H} 5 \mathrm{C} \cdots \mathrm{O} 7^{\text {iii }}$	0.91	1.95	2.858 (9)	173
$\mathrm{N} 5-\mathrm{H} 5 \mathrm{C} \cdots \mathrm{O} 8^{\text {iii }}$	0.91	2.54	3.048 (8)	116

metal-organic papers

$D-\mathrm{H} \cdots A$	D-H	H \cdots A	D \cdots A	$D-\mathrm{H} \cdots A$
N6-H6A \cdots O10 ${ }^{\text {iv }}$	0.91	1.85	2.750 (10)	175
$\mathrm{N} 6-\mathrm{H} 6 \mathrm{~B} \cdots \mathrm{O} 14^{\mathrm{v}}$	0.90	2.05	2.86 (1)	149
$\mathrm{N} 6-\mathrm{H} 6 \mathrm{C} \cdots \mathrm{O}^{\text {vi }}$	0.90	2.51	3.179 (9)	131
$\mathrm{N} 6-\mathrm{H} 6 \mathrm{C} \cdots \mathrm{O}^{\text {vi }}$	0.90	1.95	2.842 (10)	171
$\mathrm{N} 7-\mathrm{H} 7 A \cdots \mathrm{O} 2 N^{\text {,vii }}$	0.94	2.11	2.95 (1)	148
N7-H7B \cdots O15 ${ }^{\text {vii }}$	0.90	2.34	3.22 (1)	169
$\mathrm{N} 7-\mathrm{H} 7 \mathrm{C} \cdots \mathrm{O} 12{ }^{\text {viii }}$	0.90	2.02	2.68 (1)	130
$\mathrm{O} 14-\mathrm{H} 14 A \cdots \mathrm{O} 16^{\text {ix }}$	1.00	1.88	2.875 (10)	174
O14-H14B \cdots O17	0.90	2.00	2.90 (10)	179
O15-H15A $\cdots \mathrm{O}^{\mathrm{x}}$	0.91	2.23	2.946 (9)	135
O15-H15B \cdots O6	0.92	1.93	2.816 (9)	161
$\mathrm{O} 16-\mathrm{H} 16 A \cdots \mathrm{O} 10^{\text {xi }}$	0.91	1.88	2.732 (7)	154
$\mathrm{O} 16-\mathrm{H} 16 B \cdots \mathrm{O} 2^{\text {viii }}$	0.85	1.88	2.732 (7)	176
$\mathrm{O} 17-\mathrm{H} 17 \mathrm{~B} \cdots \mathrm{O} 2^{\text {xii }}$	1.09	2.00	2.72 (1)	120

Symmetry codes: (i) $x, y-1, z$; (ii) $-x+1,-y+1,-z+1$; (iii) $-x,-y+1,-z+1$; (iv) $x, y+1, z-1$; (v) $x-1, y+1, z-1$; (vi) $-x,-y+2,-z$; (vii) $-x+1,-y+2,-z$; (viii) $x, y, z-1$; (ix) $x, y, z+1$; (x) $x+1, y, z$; (xi) $x+1, y, z-1$; (xii) $x+1, y-1, z$.

The highest final difference electron-density peak and the deepest hole are located 0.94 and $0.58 \AA$ from Ce 1 and N7, respectively. The propyl fragment of one of the cations and the nitrate group are disordered. During refinement with isotropic displacement parameters, the occupancies of the disordered atoms were refined. These site-occupancy factors were fixed at 0.60 and 0.40 for the major and minor components, respectively. The H atoms of the NH_{3} groups and $\mathrm{H}_{2} \mathrm{O}$ molecules were located in difference syntheses and were refined as riding atoms, with $\mathrm{N}-\mathrm{H}=0.90-0.94 \AA$ and $\mathrm{O}_{\text {water }}-\mathrm{H}=0.85-$ $1.10 \AA\left[U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}(\mathrm{N}, \mathrm{O})\right.$, where $x=1.5$ for $\mathrm{NH}_{3} \mathrm{H}$ on atoms N 4 and N 5 , and $x=1.2$ for other H]. The remaining H atoms were
positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.95$ and $0.99 \AA$ for methine and methylene H , respectively, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for methine and methylene H .

Data collection: SMART (Bruker, 1998); cell refinement: SAINTPlus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Aghabozorg, H., Akbari Saei, A. \& Ramezanipour, F. (2005). Acta Cryst. E61, o3242-o3244.
Aghabozorg, H., Ghadermazi, M. \& Ramezanipour, F. (2006). Acta Cryst. E62, o1143-o1146.
Brouca-Cabarrecq, C., Fernandes, A., Jaud, J. \& Costes, J. P. (2002). Inorg. Chim. Acta, 332, 54-60.
Bruker (1998). SAINT-Plus (Version 6.01) and SMART (Version 5.059). Bruker AXS, Madison, Wisconsin, USA
Ghosh, S. K. \& Bharadwaj, P. K. (2004). Inorg. Chem. 43, 2293-2298.
Ghosh, S. K. \& Bharadwaj, P. K. (2005). Inorg. Chem. 44, 3156-3161.
Lü, J., Shen, E., Li, Y., Xiao, D., Wang, E. \& Xu, L. (2005). Cryst. Growth Des. 5, 65-67.
Moghimi, A., Ranjbar, M., Aghabozorg, H., Jalali, F., Shamsipur, M. \& Chadha, R. K. (2002). Can. J. Chem. 80, 1687-1696.
Sheldrick, G. M. (1998). SADABS (Version 2.01) and SHELXTL (Version 5.10). Bruker AXS, Madison, Wisconsin, USA.

Sheshmani, S., Dalir-Kheirollahi, P., Aghabozorg, H., Shokrollahi, A., Kickelbick, G., Shamsipur, M., Ramezanipour, F. \& Moghimi, A. (2005). Z. Anorg. Allg. Chem. 631, 3058-3065.

[^0]: © 2006 International Union of Crystallography All rights reserved

